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A Thermodynamic Equation of State for the Critical
Region of Ethylene

A. Abbaci1,2 and A. Berrezeg1

Received June 23, 2003

A fundamental equation of state that describes the behavior of the thermo-
dynamic properties of ethylene in the vicinity of the critical point is formu-
lated. Specifically, a crossover equation of state that takes into account not
only the scaling laws at the critical point but also the analytical behavior far
away from the critical point is presented. Analysis of different sets of data
for the thermodynamic properties is made.
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1. INTRODUCTION

Ethylene is a very important fluid due to its useful applications in indus-
try. It is an important alkene in several olefins and is a key substance that
enters into the production of ethanol, polyethylene, polystyrene, and high-
efficiency liquid fuels.

The work described in this paper is part of a research effort to
develop a comprehensive fundamental equation for the thermodynamic
properties of ethylene. The proposed equation of state is not only valid
in the vicinity of the critical region but is also capable of describing the
thermodynamic properties of ethylene analytically far away from the crit-
ical region. An analytic equation, such as the one proposed by McCarty
and Jacobsen [1], is not suitable for an accurate representation of the ther-
modynamic properties of fluids in the near-critical region, and it became
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our task to supplement the global equation of state with an equation of
state for the near-critical region. For this purpose, Olchowy and cowork-
ers [2, 3] made an attempt to represent the thermodynamic properties of
ethylene in the near-critical region with the aid of the so-called revised
and extended scaled parametric equation of state [4, 5]. The problem with
the scaled equations of state is that they are only valid in a limited range
of densities and temperatures around the critical point [5]. This restriction
becomes particularly severe at temperatures below the critical temperature.

The development of our equation of state was based on P–ρ–T data
(P is pressure, ρ is density, and T is temperature) reported by Nowak
et al. [6] since they provide adequate P–ρ–T information in the near-criti-
cal region as well as in the far away region. It is then possible to obtain
a global equation of state in the near-critical region that represents the
P–ρ–T data of Nowak et al. [6] and the speed-of-sound Cs data of Gam-
mon [7]. Comparisons with different sets of P–ρ–T data from different
sources show good agreement with the data of Nowak et al. [6], and have
also revealed good agreement between the speed-of-sound data measured
by Gammon [7] and the speed of sound reported by Dregulyas and Stavt-
sev [8] and the isobaric specific-heat data of Hejmadi and Powers [9].

Chen et al. [10, 11] have developed a new theoretically based equa-
tion of state for fluids in the critical region that incorporates the crossover
from the scaled thermodynamic behavior asymptotically close to the criti-
cal point to the analytic classical thermodynamic behavior far away from
the critical point. They verified that their crossover model yields an accu-
rate representation of the thermodynamic properties of several fluids in the
critical region covering a large range of densities and temperatures around
the critical point and extending into the far-critical region where analytic
equations of state should be accurate [12]. Hence, we decided to apply this
crossover model to ethylene.

For this purpose, we shall describe our new theoretically based cross-
over equation of state in Section 2. In Section 3, we discuss its application
to ethylene and use it to analyze the available experimental data for C2H4
in the critical region.

2. FUNDAMENTAL EQUATION

Asymptotically close to the critical point, the thermodynamic prop-
erties of fluids satisfy scaling laws with universal critical exponents and
universal scaling functions [4, 13]. Equations of state for fluids incorpo-
rating these scaling laws have been developed earlier. In a previous work,
a linear-model parametric equation of state was revised to include vapor–
liquid asymmetry and extended to incorporate the first corrections beyond
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asymptotic scaling [5, 14–16]. The range of validity of such a scaled equa-
tion of state is still somewhat restricted, and the agreement with the exper-
imental data deteriorates very rapidly as soon as the scaled equation is
extrapolated outside the near-critical region. On the other hand, outside
the critical region, the thermodynamic properties can be adequately rep-
resented by classical equations that are analytic everywhere. In order to
combine the scaling laws near the critical point with classical equations,
one needs to use a certain mechanism that includes the crossover from
scaled behavior near the critical point to analytic behavior far away from
the critical point.

Starting from the earlier work of Nicoll et al. [17–19], we have devel-
oped a crossover model to represent the thermodynamic properties of flu-
ids in the critical region [11, 12]. This crossover model is based on the
renormalization group theory of critical phenomena to include the coop-
erative effects associated with the long-range critical fluctuations up to a
maximum microscopic wave number.

Let ρ be the density, T the temperature, P the pressure, µ the chem-
ical potential, and A/V the Helmholtz free energy per unit volume. We
make these properties dimensionless with the aid of the critical parameters
[4]:

ρ̃ = ρ

ρc
, T̃ =−Tc

T
, P̃ = PTc

PcT
, µ̃= µρcTc

PcT
, Ã= ATc

PcV T
. (1)

In addition we define

�ρ̃ = ρ̃ −1, �T̃ = T̃ +1, �µ̃= µ̃− µ̃0(T̃ ), (2)

and

�Ã= Ã− ρ̃µ̃0(T̃ )− Ã0(T̃ ). (3)

Here, µ̃0(T ) and Ã0(T ) are analytic background functions of T subject to
the conditions that �µ̃=0 and Ã0 =1 at the critical temperature. The rel-
evant thermodynamic relations in terms of these reduced thermodynamic
properties can be found elsewhere [11, 12].

Classical equations of state for the Helmholtz free energy density A
imply that the classical part Acl has an asymptotic expansion of the form,

�Ãcl =
1
2
tM2 + u0

2!
M4 +· · · , (4)

where t and M are temperature-like and density-like variables related to
�T and �ρ in a manner to be specified below. In the following, we find
it convenient to write the coefficient u0 of the M4 term in Eq. (4) as



742 Abbaci and Berrezeg

u0 = �u, where � is a dimensionless cutoff wave number [10]. In order
to obtain a fundamental equation that can be applied in a large range of
densities and temperatures around the critical point, we retain six terms in
the classical Landau expansion (4) for �Acl

�Ãcl =
1
2
tM2 + u0

2!
M4 + a05

5!
M5 + a06

6!
M6 + a14

4!
tM4 + a22

2!2!
t2M2. (5)

As shown by Chen et al. [10], the theoretically predicted asymptotic behav-
ior can be recovered from this expansion by the following transformation:

�Ãr = 1
2
tM2T D+ u0

2!
M4D

2
U+ a05

5!
M5D

5/2
V U+ a06

6!
M6D

3
U

3/2

+a14

4!
tM4T D

2
U

1/2 + a22

2!2!
t2M2T

2
D U

−1/2 − 1
2
t2K , (6)

where the functions T, D, U, V and K are defined by

T=Y (2−1/ν)/ω, D=Y−η/ω, U=Y 1/ω

V=Y (2ωa−1)/2ω, K= ν

αū�

[
Y−α/νω −1

]
. (7)

In terms of a crossover function, Y is to be determined from

1− (1− ū)Y = ū

(
1+ �2

κ2

)1/2

Y 1/ω (8)

with

κ2 = tT+ 1
2
u�M2D U, (9)

and

ū= u

u∗ . (10)

In these expressions ν, η,ω, and ωa are universal critical exponents, and
u∗ is also a universal constant. The values of the universal critical-region
parameters are specified in Table I.

The crossover model depends parametrically on the variable κ2

defined by Eq. (9). For small values of κ one recovers from Eq. (6) the
scaled critical behavior, while for large values of κ the crossover function
Y approaches unity and Eq. (6) reduces to the classical Landau expansion
of Eq. (5).
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Table I. Universal Critical
Region Constants

ν =0.630
η=0.033
α =2-3
ν =0.110
�=0.51

ωa =2.1
u∗ =0.472

In order to apply the crossover model to fluids, we need to introduce
a proper translation to fluid variables [12]. This is accomplished by the
transformation [10–13],

�Ã = �Ãr − c

(
∂Ãr

∂M

)
t

(
∂Ãr

∂t

)
M

, (11)

t = ct�T̃ + c

(
∂�Ãr

∂M

)
t

, (12)

M = cρ(�ρ̃ −d1�T̃ )+ c

(
∂�Ãr

∂t

)
M

, (13)

where c, ct , cρ , and d1 are system-dependent constants. Finally, the total
Helmholtz free-energy density is obtained from Eq. (3) as

�Ã= Ã− ρ̃µ0(T̃ )− Ã0(T̃ ), (14)

with

µ̃0(T̃ )=
j=4∑
j=1

µ̃j (�T̃ )j and Ã0(T̃ )=−1+
j=4∑
j=1

Ãj (�T̃ )j . (15)

The pressure is deduced from Eq. (15) as

P̃ =�µ̃+�ρ̃�µ̃−�Ã− Ã0(T̃ ). (16)

A complete set of equations specifying the crossover model can be found
elsewhere [11, 12].
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3. APPLICATION TO ETHYLENE

The crossover model as applied to ethylene contains the following
system-dependent parameters: the critical parameters Tc, ρc, and Pc to be
deduced either from an asymptotic analysis of the thermodynamic prop-
erty data near the critical point or reported by several experiments; the
crossover parameters ū and �; the scaling-field parameters c, ct , cρ , and
d1 and the background parameters Ãj which can be determined by fitting
the crossover model to the P–ρ–T data; and finally the caloric background
µ̃i which can be determined from experimental speed-of-sound data or
specific-heat data. Actually, the coefficients µ̃0 and µ̃1 are related to the
zero-point values of energy and entropy and are not considered here. The
values of the system-dependent parameters adopted for C2H4 in this work
are presented in Table II. The range of validity of our crossover equation
is determined by

χ̃−1 �2.2, (17)

with the additional restriction that the temperature T should be within the
range

279 K�T �340 K, (18)

and the density ρ within the range,

4.28 mol ·L−1 � ρ �12.94 mol ·L−1 (19)

A survey of the available experimental information for the thermodynamic
properties of ethylene is contained in the technical report of Olchowy et al.
[3] and the papers of Nowak et al. [6] and Smukala et al. [20]. The pri-
mary experimental information for developing a thermodynamic surface
in the critical region is provided by the P–ρ–T data reported by Nowak
et al. [6] from which the system-dependent parameters of the equation of
state were determined, and those of Hastings et al. [21] for a 99.993% pure
sample. Additional P–ρ–T data have been reported by Douslin and Harri-
son [22], Trappeniers et al. [23], Michels and Geldermans [24], and Thomas
and Zander [25].

In order to determine the values of the system-dependent parameters
in the crossover model, we fitted the model to the experimental P–ρ–T
data reported by Nowak et al. [6].

First a decision must be made about the values of the critical param-
eters. A survey of the critical-parameter values reported for C2H4 is also
included in the technical report of Olchowy co-worker [3] and the work
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Table II. System-Dependent Constants for C2H4

Critical parameters Tc =282.35 K
Pc =5.0418 MPa
ρc =7.6367 mol · L−1

Crossover parameters ū=0.3682
�=1.813

Scaling-field parameters ct =1.856
cρ =2.431
c=−0.0344

Pressure background parameters Ã0 =−1
Ã1 =−5.3525
Ã2 =4.8836
Ã3 =3.7453
Ã4 =−7.8945
d1 =−0.3317

Classical parameters a05 =−0.1405
a06 =0.9934
a14 =0.2289
a22 =0.2077

Caloric background parameters µ̃2 =13.143
µ̃3 =−2.642

of Nowak et al. [6]. The critical temperature and density of ethylene were
reported earlier by Moldover [26] by a visual observation method mea-
surement. As mentioned by Olchowy co-workers [3], a small calibration
error was found in the measurements of the vapor pressure using the
apparatus of Hastings et al. [21]; as a consequence, we disregard the crit-
ical pressure of Moldover. The critical parameters deduced by Olchowy
co-workers [3] from the analysis of P–ρ–T of different sources, and those
reported by Douslin and Harrison [22] as well as those reported by
Nowak et al. [6] are closely related except for the critical density of the lat-
ter which is slightly higher than that of Olchowy et al. and that of Douslin
and Harrison. The critical parameters we retained for the formulation of
our equation of state are the recent finding of Nowak et al. [6]. The dif-
ferent values of the critical parameters are reported in Table III.

Fitting the same crossover equation of state to the P–ρ–T data of
Nowak et al. [6] with the critical parameters chosen to be those of the
same authors [6], we obtained the system-dependent parameters, such
as the crossover parameters, �, ū, the scaling-field parameters ct , cρ , c,
the classical parameters a05, a06, a14, a22, and the pressure-background
parameters Ã1, Ã2, Ã3, and Ã4. The crossover model fits the P–ρ–T
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Table III. Critical Parameters of Ethylene

Author Data source Tc (K) Pc (MPa) ρ(mol · L−1)

Moldover [26] (a) 282.344±0.0044 7.650±0.021
Douslin and

Harrison [22]
PVT [22] 282.35 5.0420 7.635±0.006

Olchowy
Co-workers [3]

PVT [21] 282.3452 5.0403 7.634

Nowak et al. [6] PVT [6] 282.350±0.010 5.0418±0.0011 7.6367±0.0036

a Visual observation of meniscus disappearance.

data of Nowak et al. [6] with static χ2 =2.1 in the range bounded by Eqs.
(17)–(19), where the experimental data were assigned absolute weights by
propagation of error on the basis of the following error estimates [6]:

σP =30 Pa, σρ =1.5×10−4%, σT =0.003K. (20)

A comparison between the experimental P–ρ–T data of Nowak et al.
[6] and the values calculated from our equation is presented in Fig. 1 in
the form of pressure deviations as a function of the inverse compressibil-
ity χ̃−1

T along various isotherms. The equation reproduces the data within

 

Fig. 1. Percentage differences between the experimental pressure data of Nowak et al. [6]
and the values calculated from the crossover model fundamental equation.
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the estimated errors. We also note that the average percent deviation in
pressure is calculated to be |�|=

∣∣∣Pexp−Pcalc
Pexp

∣∣∣=0.016%.
We compare the equation of state with the P–ρ–T data obtained

by Hasting et al. [21], Douslin and Harrison [22], Trappeniers et al. [23],
Michels and Geldermans [24], and those of Thomas and Zander [25].
Comparisons of the three sets of data with the crossover model predic-
tions are given as absolute mean values of the percent deviations of the
experimental pressures from the calculated pressures from our formulation.
This value was found to be 0.016% for the experimental data of Hastings
et al., 0.043% for those of Douslin and Harisson, 0.032% for the data mea-
sured by Trappeniers et al., 0.127% for those of Michels and Geldermans
and finally this value was 0.087% for the data of Thomas and Zander. It is
clear that among the analyzed experimental data, those obtained by Has-
tings et al. [21] were the most accurate compared to those of Nowak et al.
[6].

The analytic background coefficients µ̃2 and µ̃3 can be best deter-
mined from a comparison with speed-of-sound data. The set of experimen-
tal data of Gammon [7] and those measured by Dregulyas and Stavtsev [8]
are characterized by a wider range of temperatures and densities around
the critical point. These latter data were discarded from the determination
of the caloric parameters for reasons we will explain later. Therefore, our
choice was made to use the speed-of-sound data of Gammon [7].

However, their temperature range was limited. For this purpose, we
used the speed of sound data reported by Gammon [7] supplemented with
the isobaric specific-heat data of Hejmadi and Powers [9]. The experimen-
tal speeds of sound of Gammon and the isobaric specific-heat data have
been measured along isobars as a function of temperature. In Figs. 2 and
3, we show these same speed-of-sound and isobaric specific-heat data suc-
cessively as a function of density when the densities associated with the
experimental temperatures and pressures are calculated from the equation
of state. We finally made a comparison of our model with another set of
speed-of-sound data measured by Dregulyas and Stavtsev [8]. It is seen
that the locations of the speed-of-sound minima are reproduced near the
critical point. Theory predicts a zero value of sound speed at the crit-
ical point. However, we should mention that we have omitted the iso-
therm 293.15 K for the speed of sound of Dregulyas and Stavtsev [8] from
the comparisons due to measured values showing very large departures
from our formulation. The final comparison of these data is shown in
Fig. 4.

We can also notice in Fig. 3 that the maxima locations of the iso-
baric specific-heat data obtained by Hejmadi and Powers [9] are somewhat
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Fig. 2. Speed of sound Cs as a function of density at various tem-
peratures. The data points are experimental values of Gammon [7],
and the solid curve represents Cs values calculated from our cross-
over model fundamental equation.

 
 
 

Fig. 3. Isobaric specific heat CP as a function of density at various
pressures. The data points are experimental values of Hejmadi and Pow-
ers [9], and the solid curve represents CP values calculated from our
crossover model fundamental equation.
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Fig. 4. Speed of sound Cs as a function of pressure at various temper-
atures. The data points are experimental values of Dregulyas and Stavt-
sev [8], and the solid curve represents Cs values calculated from our
crossover model fundamental equation.

 
 
 

Fig. 5. Isobaric specific heat CP as a function of density at various
pressures. The data points are experimental values of Hejmadi and Pow-
ers [9], and the solid curve represents CP values calculated from our
crossover model fundamental equation after a pressure correction of
+0.0016 MPa.
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shifted from the calculated ones. The apparent critical parameters shift
away from the critical density when the critical pressure is approached.
Such a behavior is usually a sign that there exists a discrepancy between
the critical parameters (Tc, Pc) implied by these specific-heat data and
those adopted in the formulation of the present equation of state. We
noticed that the problem disappears if the experimental pressures quoted
by Hejmadi and Powers [9] are shifted by +0.0160 MPa. The application
of this correction has resolved the problem of the isobaric specific-heat
data maxima, although we were unable to obtain an independent confir-
mation from the investigators to justify these corrections. The corrected
maxima are shown in Fig. 5.
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Fig. 6. Isochoric specific heat Cv as a function of temperature corresponding to ρ=
7.0 mol · L−1, ρ = ρc = 7.637 mol · L−1, ρ = 8.0 mol · L−1, and ρ = 9.0 mol · L−1.
The data points are the predicted values of CV from the Nehzat et al. formulation [27],
and the solid curve represents Cv values calculated from our crossover model fundamen-
tal equation.
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A final note concerns the nonanalytic formulation that includes some
characteristics of a scaled equation for the thermodynamic properties of
ethylene in the critical region that was done by Nehzat et al. [27]. We
used the calculated specific heat Cv along different isochores and com-
pared them with those calculated from our formulation as shown in Fig. 6.
The equation formulated by Nehzat et al. [27] does not give the correct
behavior of Cv along the critical isochore as shown in Fig. 6.
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Universitaire of the Algerian Government under the Grant No. Cu 39718.

REFERENCES

1. R. D. McCarty and R. T. Jacobsen, NBS Tech. Note 1045, National Bureau of Standards,
Washington, DC (1981).

2. R. T. Jacobsen, M. Jahangiri, R. B. Stewart, R. D. McCarty, J. M. H. Levelt
Sengers, H. J. White, J. V. Sengers, and G. A. Olchowy, Ethylene (Ethene), Interna-
tional Thermodynamic Tables of Fluids State (Blackwell Scientific, Oxford, 1988).

3. J. M. H. Levelt Sengers, G. A. Olchowy, B. Kamgar-Parsi, and J. V. Sengers, A
Thermodynamic Surface for the Critical Region of Ethylene, NBS Tech. Note 1189,
National Bureau of Standards, Washington, DC (1984).

4. J. V. Sengers and J. M. H. Levelt Sengers, Ann. Rev. Phys. Chem. 37:189 (1986).
5. J. V. Sengers and J. M. H. Levelt Sengers, Int. J. Thermophys. 5:195 (1984).
6. P. Nowak, R. Kleinrahm, and W. Wagner, J. Chem. Thermodyn. 28:1423 (1996).
7. B. E. Gammon, presented at the Advisory Committee Meeting of the Joint Industry—

Government Ethylene Project, Boulder, Colorado (Dec. 6, 1978).
8. E. K. Dregulyas and A. F. Stavtsev, Teplofiz. Vysokikh. Temperatur. 22:111 (1984).
9. A. V. Hejmadi and J. E. Powers, Final Report to the Advisory Committee of the

Industry-Government Ethylene Project, Thermal Properties of Fluids Laboratory,
University of Michigan, Ann Arbor (1979).

10. Z. Y. Chen, P. C. Albright, and J. V. Sengers, Phys. Rev. A 41:3161 (1990).
11. Z. Y. Chen, A. Abbaci, S. Tang, and J. V. Sengers, Phys. Rev. A 42:4470 (1990).
12. A. Abbaci, Ph.D. thesis, University of Maryland at College Park (1991).
13. P. C. Albright, Z. Y. Chen, and J. V. Sengers, Phys. Rev. B 36:877 (1987).
14. F. W. Balfour, J. V. Sengers, M. R. Moldover, and J. M. H. Levelt Sengers, Phys. Lett. A

65:223 (1978).
15. J. M. H. Levelt Sengers, B. Kamgar Parsi, F. W. Balfour, and J. V. Sengers, J. Phys. Chem.

Ref. Data 12:1 (1983).



752 Abbaci and Berrezeg

16. P. C. Albright, T. J. Edwards, Z. Y. Chen, and J. V. Sengers, J. Chem. Phys. 3:1717 (1987).
17. J. F. Nicoll, Phys. Rev. A 24:2203 (1981).
18. J. F. Nicoll and J. K. Bhattacharjee, Phys. Rev. B 23:389 (1981).
19. J. F. Nicoll and P. C. Albright, Phys. Rev. B 31:4576 (1985).
20. J. Smukala, R. Span, and W. Wagner, J. Phys. Chem. Ref. Data 29:1053 (2000).
21. J. R. Hastings, J. M. H. Levelt Sengers, and F. W. Balfour, J. Chem. Thermodyn. 12:1009

(1980).
22. D. R. Douslin and R. H. Harrison, J. Chem. Thermodyn. 8:301 (1976).
23. N. J. Trappeniers, T. Wassenaar, and G. J. Wolkers, Physica A 82:305 (1976).
24. A. Michels and M. Geldermans, Physica 9:967 (1942).
25. W. Thomas and M. Zander, Int. J. Thermophys. 1:383 (1980).
26. M. R. Moldover, J. Chem. Phys. 61:1766 (1979).
27. M. S. Nehzat, K. R. Hall, and P. T. Eubank, J. Chem. Eng. Data 28:205 (1983).


